怎么利用二次函数的图像求一元二次方程的近似值 最好来个范例

y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a
怎么利用二次函数的图像求一元二次方程的近似值 最好来个范例
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x�0�5的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
2o08.寻¥ 2008-07-05 21:36
#LΔOЖVE& 对 2o08.寻¥ 的感言:
hao

您觉得这个答案好不好?

好(0)不好(0) 相关问题

�6�1 什么是二次函数的应用和性质?

�6�1 二次函数的定义、性质

�6�1 一次函数的性质

�6�1 什么是一次函数? 一次函数有什么性质?

�6�1 二次函数怎么做?

标签:函数 性质 因变量 其他答案

抛物线,对称轴
∮☆风★£ 2008-07-06 19:37
1、 函数 叫做二次函数,利用多媒体演示参数 、 、 的变化对函数图像的影响,着重演示 对函数图像的影响
2、 通过以下几方面研究函数
(1)、配方
(2)、求函数图像与坐标轴的交点
(3)、函数的对称性质
(4)、函数的单调性
3、 例:研究函数 的图像与性质
解:(1)配方
所以函数 的图像可以看作是由 经一系列变换得到的,具体地说:先将 上每一点的横坐标变为原来的2倍,再将所得的图像向左移动4个单位,向下移动2个单位得到.
(2)函数与x轴的交点是(-6,0)和(-2,0),与y轴的交点是(0,6)
(3)函数的对称轴是x=-4,事实上如果一个函数满足: ( ),那么函数 关于 对称.
(4)设 , ,
= =
=
因为 ,
所以2013-08-19
画出二次函数的图像,图像与X轴的交点坐标就是相应一元二次方程的解2013-08-19
解:x�0�5-x-1=0
x=[1±√(1+4)]/2
x=(1±√5)/2
x≈(1±2.236)/2
x�6�9=1.618,x�6�0=-0.618
方法自己体会吧!2013-08-19
cdw 阅读 2 次 更新于 2025-06-17 14:09:57 我来答关注问题0
  • 善解人意一 利用二次函数+y=Δ(a>0)的图像求解相应的一元二次不等式,可以分为三步,分别是什么?

    在利用y=ax²+bx+c(a>0)时 所以第一步‘化正’,使a>0就免了。①求方程ax²+bx+c=0解。若Δ>0,则方程有两个不相等的实根,不妨设为:x₁<x₂②若y>0,则不等式的解为 x<x₁或x>x₂(大于零取两边)若y<0,则不等式的解为 x&#...

  •  腾云新分享 怎样利用二次函数的图象求一元二次方程的近似解

    1. 绘制函数图象:首先,将一元二次方程转化为二次函数的形式y = ax^2 + bx + c。然后,在坐标系中绘制这个函数的图象。这通常可以通过代入几个x值并计算对应的y值来完成,从而得到一系列的点,然后将这些点连接起来形成一条平滑的曲线。2. 寻找根的位置:一旦有了二次函数的图象,接下来要做...

  •  596392 通过二次函数图像解一元二次不等式的方法?

    通过二次函数图像解一元二次不等式的方法? 急急急详细一点,最好有图... 急急急详细一点,最好有图 展开  我来答 1个回答 #热议# 如何缓解焦虑情绪?596392 2013-12-04 · TA获得超过1283个赞 知道小有建树答主 回答量:478 采纳率:100% 帮助的人:233万 我也去答题访问个人页 关注 展开...

  •  闲云逸鹤听雨轩 利用二次函数的图像,求一元二次-x的平方+2x+5=0的近似根

    分析:设y=-x^2+2x+5,根据图象与x轴的交点横坐标求解。解:画函数y=-x^2+2x+5的图象,见下图:∴由图象可知x1≈3.4,x2≈-1.4 【数不胜数】团队为您解答,望采纳O(∩_∩)O~

  •  我在古文 利用二次函数的图像,求一元二次方程-2x^2+4x+1=0的近似根

    画出函数y=-2x^2+4x+1的图象,抛物线与x轴交于A,B两个,则A、B两点的横坐标即为方程-2x^2+4x+1=0的解,所以上面方程的近似解为,x1=2.22,x2=-0.22.

词典网在线解答立即免费咨询

范例范文相关话题

Copyright © 2023 cidian.nuo5.com - 词典网
返回顶部